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The advancements in the detection and characterization of circulating

tumor DNA (ctDNA) have revolutionized precision medicine and are likely

to transform standard clinical practice. The non-invasive nature of this

approach allows for molecular profiling of the entire tumor entity, while

also enabling real-time monitoring of the effectiveness of cancer therapies

as well as the identification of resistance mechanisms to guide targeted

therapy. Although the field of ctDNA studies offers a wide range of appli-

cations, including in early disease, in this review we mainly focus on the

role of ctDNA in the dynamic molecular characterization of unresectable

locally advanced and metastatic BC (mBC). Here, we provide clinical
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practice guidance for the rapidly evolving field of molecular profiling of

mBC, outlining the current landscape of liquid biopsy applications and

how to choose the right ctDNA assay. Additionally, we underline the

importance of exploring the clinical relevance of novel molecular alter-

ations that potentially represent therapeutic targets in mBC, along with

mutations where targeted therapy is already approved. Finally, we present

a potential roadmap for integrating ctDNA analysis into clinical practice.

1. Introduction

The contemporary goal of precision medicine in

patients with cancer is to identify biologically sensitive

groups of tumors that will respond to targeted thera-

pies. In this context, genomic sequencing of specific

molecular alterations is increasingly performed in tis-

sue samples, although tumor heterogeneity – both spa-

tial and temporal – represents a major limitation of

this approach [1]. An emerging alternative for captur-

ing spatial sub-clonal heterogeneity and clonal evolu-

tion during treatment, that allows for therapeutic

clinical decision making, is the detection of circulating

tumor DNA (ctDNA) via non-invasive liquid biopsy

[2–4].
Treatment choices in patients with breast cancer

have historically been based on human epidermal

growth factor receptor 2 (HER2) and hormone recep-

tor (HR) status [5]. In the neoadjuvant setting, a major

challenge is the prediction of response to systemic

treatment before surgery in order to escalate treatment

in non-responders and de-escalate treatment in

responders, as appropriate [6–10]. To date, neither

imaging methods including ultrasound [11] or MRI

[12] nor image-guided breast biopsies before surgery

[13–15] have been able to adequately predict patho-

logic complete response (pCR). For this purpose, serial

ctDNA analyses could provide a new approach to

assess or predict tumor response early on during

neoadjuvant treatment, thus ultimately guiding treat-

ment decisions [10].

In metastatic BC (mBC), classical biomarkers such

as HR and HER2 status are traditionally important

for treatment decisions. Therefore, this review summarizes

the status quo of the dynamic molecular characteriza-

tion of mBC, especially in HR-positive, HER2-

negative disease [16]. Moreover, we provide clinical

practice guidance for the rapidly evolving field of

molecular profiling of mBC and underline the impor-

tance of exploring the clinical relevance of novel

molecular alterations that potentially represent thera-

peutic targets in mBC.

2. Tumor biology evolves over time

According to GLOBOCAN, in 2020, female breast

cancer was the most commonly diagnosed cancer

worldwide, with an estimated 2.3 million new cases

and 685 000 deaths [17]. While breast cancer is mostly

diagnosed at an early stage and associated with a 96%

5-year survival probability in Europe [18], mBC still

largely represents an incurable disease [19,20]. Breast

cancer can be subclassified into five intrinsic subtypes,

that is, luminal A, luminal B, HER2-enriched, basal,

and normal-like, which reflect fundamental differences

at the molecular level and thus distinct clinical

outcomes, mainly in patients with early breast cancer

[21–24].
Tumor (tissue) biopsy still represents the gold stan-

dard for diagnosis, classification, and treatment deci-

sions. However, studies have found changes in

subtypes at or after progression on anticancer thera-

pies in up to 40% of tumors [25–33]. Importantly,

beyond the HR and/or HER2 status detected in tissue,

liquid biopsy provides a new concept to characterize

and monitor the tumor genome and is increasingly

being used as a tool to further guide clinical decision

making [25,29,34–36].
After the diagnosis of metachronous metastatic

(metastatic spread after 3 months after initial diagno-

sis) disease, patients often undergo initial confirmatory

tissue biopsy including reassessment of the receptor

subtype classification, which appears necessary due to

a high rate of changes in HR and HER2 receptor sta-

tus [25–33]. In addition, mBC could display major

genomic differences compared to primary breast can-

cer as reported in sequencing studies of HR-positive

mBC [37]. In this context, the AURORA trial showed

enriched alterations in several driver genes from meta-

static lesions, including: ESR1, PTEN, CDH1,

PIK3CA and RB1 mutations, MDM4 and MYC

amplifications, ARID1A deletions, and clonality in

genes like RB1 and ERBB2. Additionally, high tumor

mutational burden (TMB) was reported to correlate

with shorter time to relapse in patients with HR-
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positive/HER2-negative mBC [29,38]. Furthermore, in

HR-positive mBC, mechanisms of acquired resistance

to prior endocrine therapy (ET) were linked to ESR1

[39], MAPK pathway mutations [40,41], and transcrip-

tion factor mutations (e.g., ARID1A [40,42,43]). In

contrast, in HER2-positive and TNBC, no major

genomic differences have been reported in primary vs.

advanced settings [37,40].

Although tissue may be analyzed using

next-generation sequencing (NGS), serial tissue biopsies

are not routinely performed, given their invasiveness as

well as anatomical constraints (e.g., bone metastasis).

This further highlights the relevance of ctDNA analysis

via NGS as an alternative. In this context, the phase 2a

plasmaMATCH trial has paved the way for future per-

sonalized treatment approaches, since patients were

selected for specific treatments based on the detection of

mutations in ctDNA. Here, the sensitivity and specific-

ity were comparable between tissue and ctDNA analysis

for AKT1, HER2, and PIK3CA mutations [44].

Recently, we reported that elevated longitudinal trajec-

tories of tumor fractions, as detected by the untargeted

modified Fast Aneuploidy Screening Test-Sequencing

System (mFAST-SeqS), were significantly associated

with a higher progression risk in patients with HR-

positive/HER2-negative mBC. The tumor agnostic,

mFAST-SeqS approach represents a simple and afford-

able method to estimate tumor fractions, that is, the

proportion of cell-free DNA (cfDNA) that is

tumor-derived ctDNA, by assessing chromosomal aneu-

ploidy instead of mutations. After amplification and

sequencing of uniquely mappable LINE1-sequences

across the genome, read counts are determined on a

chromosome-arm level and compared to a set of healthy

controls. Deviations are represented as z-scores and

indicate gains and losses of chromosomal material.

Finally, the squared sum of chromosome-arm z-scores

is calculated, that is, the genome-wide z-score, which

can be used as a surrogate for tumor fraction [45]. We

have shown a very good correlation of mFAST-SeqS

based z-scores with ‘ichorCNA’ tumor fractions [46].

Patients who developed progressive disease had higher

baseline tumor fractions and showed constant increases

over time. Furthermore, we have demonstrated the

added value of evaluation of an untargeted assessment

of tumor fractions along with cfDNA-based mutational

profiling [47].

3. Liquid biopsy

The broad concept of liquid biopsy encompasses the anal-

ysis of circulating nucleic acids, tumor cells, cell-free

RNA, extracellular vesicles, and tumor-educated platelets

that are released by primary or metastatic tumor lesions

into the bloodstream or other body fluids. Thus, liquid

biopsy represents a simple, non-invasive method (e.g.,

based on blood sampling) providing a molecular footprint

of the whole tumor entity [28,35,48–51].
A number of processes involved in regular cell turn-

over, for example, necrosis or apoptosis, result in the

release of cfDNA, whereas senescence prevents it [52–
55]. In the setting of cancer, a certain proportion of

cfDNA is derived from tumor cells (i.e., primary and

secondary tumor sites) and contains the full set of its

genetic information. Thus, it is referred to as ctDNA

[48–51].
The amount of ctDNA ranges from 0.01% to 0.1%

in early-stage to 5–10% or even higher in

advanced-stage cancers where cancer cells are more

abundant and undergoing more rapid cell division

[51,56]. While both cfDNA and ctDNA can include

fragments of similar sizes, ctDNA fragments often

exhibit a more pronounced peak at shorter lengths or

a more diverse size distribution [57]. ctDNA varies

with respect to fragment length, numbers, and variant

allele frequency (VAF) of alterations and has a very

short half-life of < 120 min [58], despite the lack of

comprehensive pharmacokinetic studies to accurately

establish this. ctDNA assessment allows for a compre-

hensive genomic snapshot of the tumor mutational

content, even in cases of tumor heterogeneity and cell

plasticity during cancer progression [58–60]. The

ctDNA dynamics along the clinical course of breast

cancer including appropriate ctDNA assays and their

sensitivity are depicted in Fig. 1.

4. Preanalytical and analytical
considerations

Plasma seems to be the ideal analyte for ctDNA col-

lection and diagnostic purposes in solid tumors,

including breast cancer [48–50]. There is a consensus

to use specialized collection tubes, for example, PAX-

gene Blood circulating cfDNA tubes or those from

commercial providers that contain an additive to stabi-

lize blood cells, thus preventing cell lysis, particularly

if plasma extraction cannot be done with 4–6 h after

blood draw. After plasma separation, DNA extraction

is performed using commercial kits specifically

designed for cfDNA, and finally, the amount of

cfDNA is quantified [61]. Importantly, the selection

of the approach to library preparation dictates the

final type of information obtained from the analysis.

Although there are several targeted sequencing

approaches available, the most common ones are

amplicon-based (i.e., tagged-amplicon deep sequencing
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(TAm-Seq), Safe-Sequencing System (Safe-SeqS), and

simple, multiplexed, PCR-based barcoding of DNA for

sensitive mutation detection using Sequencing (SiMSen-

seq)), and hybrid capture-based (i.e., pan-cancer ctDNA

expanded liquid biopsy panel) methods. Briefly, the PCR

amplicon-based method uses specific primers to amplify

and enrich only target genomic regions of interest. After

amplification, sequencing adapters and barcode indexes

are added to create the library for sequencing. In the

hybrid capture method, genomic DNA is first fragmented

followed by ligation of adapters and barcode indices to

generate a genomic library which is further subjected

to hybridization using long, biotinylated specific oligonu-

cleotide baits (probes). The target sequences are captured

using streptavidin magnetic beads followed by elution of

the library which is further subjected to PCR amplifica-

tion and deep sequencing [61,62]. Overall,

amplicon-based sequencing requires lower amounts of

DNA input, is generally more cost-effective, and has

higher on-target rates. As a result, it is more often used in

small-scale experiments. In contrast, hybridization cap-

ture provides more uniform coverage of on-target reads.

The longer bait sequences allow for a greater level

of specificity in region selection. Furthermore, it

produces fewer PCR duplicates, making it particularly

useful for samples where PCR artifacts are likely to

occur, such as ctDNA samples. Therefore, it is the pre-

ferred methodology for large panels and whole-exome

sequencing [62,63].

5. Choosing the right NGS-based
ctDNA assay

The choice of the right assay, which may be based on

PCR, ddPCR, or NGS, first depends on the clinical

question at hand, what type of information needs to

be harvested from the sample, and the disease stage of

the patient. In terms of NGS-based approaches, the

decision generally relies on the distinction between a

targeted approach that focuses on particular prede-

fined regions of the genome and an untargeted

approach, such as whole-exome sequencing (WES),

which targets all human protein coding genes, or

whole-genome sequencing (WGS). Moreover, these

assays can either be personalized based on existing

sequencing data or tumor-agnostic, which means that

the assessment is performed without any prior knowl-

edge of the tumor genome (or in the absence of any

baseline data) [61].

In the setting of early disease and MRD (molecular

residual disease) monitoring, where the likelihood of

detecting ctDNA fragments must be maximized,

tumor-informed NGS assays designed to track patient-

specific mutations longitudinally are typically used, as

they can achieve the required sensitivities to detect

minute traces of ctDNA [64–66]. This approach entails

WES or WGS of a baseline tissue or plasma sample

and then subsequently designing patient-specific panels

to screen for dozens or up to thousands of mutations.

These approaches enable the detection of ctDNA at

levels below one part-per-million (< 0.0001%) (ppm)

[66]. However, a variety of tumor-agnostic approaches

employing multi-omics methods, such as ctDNA meth-

ylation or fragment-omics, have also demonstrated

promising performances, and many more are in devel-

opment [67].

For patients with advanced cancer, the most pre-

dominant current clinical use case for ctDNA analysis

is molecular profiling for the selection of targeted

treatments. In this regard, the strategy is to maximize

Fig. 1. ctDNA dynamics along the

clinical course of breast cancer.

The blue line represents ctDNA

variations over disease progression

and the orange line represents the

emergence of new mutations

during treatment. ddPCR, digital

droplet PCR; MRD, molecular

residual disease; NGS, next-

generation sequencing; qPCR,

quantitative PCR; WES, whole-

exome sequencing; WGS, whole-

genome sequencing. Adapted from

[142]. Figure created with

BioRender.com.
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the identification of actionable alterations that can be

matched to targeted therapies. Typically, pan-cancer

comprehensive genomic profiling (CGP) panels are

employed to enable the detection of many clinically

relevant biomarkers [61].

There are several commercially available kits enrich-

ing for tens or hundreds of genes. For example, the

AVENIO ctDNA Expanded kit, that is based on

the Cancer Personalized Profiling by deep Sequencing

(CAPP-Seq) [68], contains 77 genes, of which 17 bio-

markers are recommended by the National Compre-

hensive Cancer Network (NCCN) guidelines and 60

biomarkers are currently under investigation in clinical

trials. Other panels, such as the TruSight Oncology

500 ctDNA which enables in-house CGP of ctDNA

and targets 523 genes to assess DNA variants across

major variant classes (SNV, MNV, indels, CNV, and

gene rearrangements), also include the assessment of

TMB or microsatellite instability (MSI). If there are

no in-house partner laboratories that carry out such

analyses, samples can be sent to a commercial end-to-

end provider to provide the molecular tumor board

with all relevant information [61].

It is also worth mentioning that other ctDNA-based

approaches may have specific applications that do not

require NGS. For example, the Therascreen� PIK3CA

RGQ PCR kit, which received FDA approval for

advanced-stage HR-positive/HER2 -negative breast

cancer based on the findings of the phase III SOLAR-

1 trial, is a real-time PCR test that screens for 11

therapy-relevant PIK3CA mutations from plasma [69].

Tables 1–3 summarize available ctDNA assays to

direct therapy in advanced disease, for MRD detection

and early detection, respectively, while Fig. 2 depicts

ctDNA analytical approaches.

6. Early breast cancer – risk
stratification and early assessment of
disease progression

In patients with early breast cancer, ctDNA levels were

shown to be elevated before and after surgery com-

pared to those with benign breast lesions, and ctDNA

levels correlated with nodal involvement and tumor

size [82]. Additionally, detection of ctDNA during

follow-up in patients with early breast cancer was

shown to be associated with a high risk of future

relapse [83]. In terms of response rates to neoadjuvant

systemic treatment and pCR, studies have shown lower

rates of pCR in patients where ctDNA was detected

before the administration of neoadjuvant anti-HER2

therapies [84]. In a subanalysis of the NEOALLTO

trial, ctDNA detection before neoadjuvant treatment

was significantly associated with older age and ER

negativity. The lowest pCR rate was detected in

patients with detectable ctDNA before and during

neoadjuvant treatment, whereas during neoadjuvant

treatment, a rapid decrease in ctDNA levels (ctDNA

clearance) was linked to response like pCR [85,86].

Moreover, the detection and persistence of ctDNA

during neoadjuvant systemic treatment was shown to

predict poor response [10] and metastatic recurrence

[87]. Presence of ctDNA towards the end of treatment

is expected to reflect residual disease [74]. Magbanua

et al. [76] evaluated ctDNA clearance under neoadju-

vant treatment in 295 patients with early disease with

Table 1. Examples of commercially available ctDNA assays to direct therapy in advanced disease. WBC, white blood cells.

Test name Company

FDA approval as

companion diagnostic

Number of

genes in

panel

Complex

biomarkers

included Trials performed with the assay

Foundation Liquid CDx Foundation

Medicine

Yes 324 Yes IMAGE trial

mTNBC, ≥ 1 treatment lines, genomic

driven therapies, NGS in tissue vs.

plasma [76]

Guardant360 CDx Guardant

Health

Yes 74 Yes mBC, ctDNA

ESR1 status for treatment with

Elacestrant (Emerald trial [77])

ESR1, HER2, AKT1, PTEN mutations for

targeted therapies (plasmaMATCH [78])

PGDx elio Plasma Resolve Labcorp No, but has received

Breakthrough Device

Designation

33 No Metastatic colorectal cancer, ctDNA in

combination with WBC for treatment

response monitoring [79]

PGDx elio Plasma Complete Labcorp 521 Yes –

Tempus xF+ Tempus No 523 Yes mBC NGS is tissue vs. ctDNA [80]

Circulogene TumorClear Circulogene No 88 Yes –
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the SignateraTM residual disease assay, a personalized

tumor-informed ctDNA test. Early ctDNA clearance

was significantly associated to Residual Cancer Burden

(RCB) 0 and pCR, respectively, in triple negative

breast cancer (TNBC) but not for HR-positive and

HER2-positive tumors. ctDNA persistence at the time

of surgery was significantly associated with increased

risk of relapse and worse overall survival. However,

the data demonstrate that particularly in HR-positive

patients more sensitive tests are needed to decrease the

false-negative cases. Further clinical data are needed

to establish the value of ctDNA in these groups.

Fig. 2. Tumor-informed vs. tumor-naive approaches. This figure gives an overview of strategies for liquid biopsy based in clinical practice. In

orange the applications of tumor-informed assays are highlighted, in green the use of tumor-na€ıve assays is shown. Adapted from

[143,144]. Figure created with BioRender.com.

Table 3. Examples of commercially available ctDNA assays for early cancer detection.

Test name Company FDA approval Tumor types Details

CancerSEEK Exact

Sciences

No Multiple A multi-biomarker class (mutations, methylation, proteins,

and aneuploidy) and machine-learning approach.

CancerSEEK was used in DETECT-A study [87]. Test is

under further development. The features above describe

current development goals

Epi proColon Epigenomics Yes Colorectal cancer Real-time PCR detection of Septin9 methylation, which is

altered in colorectal cancer tumor cells more often than in

normal cells [88]

Epi proLung Epigenomics No Lung cancer Real-time PCR assay for the qualitative detection of SHOX2

and PTGER4 gene methylation in DNA [89]

Shield Guardant

Health

No, but submitted

application for

Pre-Market Approval

Colorectal cancer Uses a multimodal approach, integrating genomics,

epigenomics, and proteomics, to achieve high sensitivity

and specificity in detecting early signs of colorectal cancer

in average-risk adults aged 45 and older (ECLIPSE:

NCT04136002)

Galleri� GRAIL No Multi-cancer (50+

types)

Plasma cfDNA bisulfite sequencing targeting a panel of

> 100 000 informative methylation regions. Cancer

detection and tissue of origin (TOO) localization through a

proprietary classifier. Recently tested in the large-scale

SYMPLIFY study in a symptomatic patient population [90]
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Nevertheless, this trial is so far the largest neoadjuvant

trial demonstrating the potential of ctDNA testing at

an early neoadjuvant stage. Another trial by Parson

et al. [70] enrolled solely TNBC and demonstrated that

tumor-informed clearance of ctDNA was associated

with pCR and RCBI or 0 and that five of six patients

with relapse were ctDNA positive before surgery.

In patients with non-metastatic (stage I–III) breast

cancer, serial monitoring of ctDNA detected progres-

sion with a sensitivity of 86–93% and a specificity of

100% with an average lead time of 11 months (range,

0.5–37) even before recurrent disease was detected by

imaging or clinical signs became apparent [75,88,89].

Despite these promising data, the primary concern is

still the restricted sensitivity of existing assays in accu-

rately identifying all patients at risk of relapse. Conse-

quently, studies investigating the potential for

treatment de-escalation based on ctDNA are not yet

poised for initiation. However, findings from all stud-

ies conducted in the neoadjuvant setting thus far,

including our own research, consistently indicate that

the persistence of ctDNA under neoadjuvant treatment

carries an unfavorable prognosis. Early assessment in

these cases may serve as a basis for treatment intensifi-

cation, thus enhancing the prognosis for these patients.

Many follow-up studies evaluating ctDNA detection

after treatment are underway. Turner et al. [90] exam-

ined a surveillance strategy and advocated for treat-

ment escalation among patients with TNBC based on

ctDNA positivity. In the intervention cohort, patients

received pembrolizumab when ctDNA was detected.

However, with only nine of 32 patients remaining in

the intervention cohort after staging, and only five

receiving pembrolizumab, the trial was underpowered

and enriched for high-risk patients. Only one patient

experienced a drop in ctDNA levels under treatment.

Many similar trials evaluating ctDNA detection after

treatment are underway and we anticipate a substan-

tial rise in evidence, with several methods outlined in

Tables 1–3 showing encouraging outcomes for future

clinical interventions [73,91,92].

7. Advanced breast cancer – detection
of an increasing number of
genome-based therapeutic targets

While ctDNA testing may be used to identify disease

relapse prior to imaging in early-stage breast cancer as

a future perspective, it is already becoming a crucial

part of routine clinical practice in mBC. This is due to

the high number of actionable mutations that can be

detected, as well as the utility of ctDNA as a surrogate

for tumor burden. Besides ER, progesterone receptor

(PR), and HER2 status, there is an increasing number

of other biomarkers known to predict drug benefits

and affect patient management and treatment

approaches [93,94]. These include germline BRCA1/2

mutations (gBRCA1/2m) in HER2-negative mBC,

PD-L1 in TNBC or PIK3CA in ER/PR-positive,

HER2-negative mBC [95] and, more recently, ESR1

mutations. In this context, the development of endo-

crine resistance in mBC represents a challenging clini-

cal scenario in which serial testing of ctDNA

represents a vital tool for early detection of resistance

mechanisms and prediction of progression-free survival

(PFS) [96-98].

In patients with locally advanced or metastatic ER-

positive/HER2-negative breast cancer, ET with either

aromatase inhibitors (AI) or fulvestrant plus a

cyclin-dependent kinase 4/6 (CDK4/6) inhibitor is

recommended as first-line standard of care (SOC). Pro-

gression after at least one line of ET or CDK4/6 inhib-

itor therapy is often associated with endocrine

resistance, which includes development of acquired

mutations in a variety of genes, including ERBB2,

NF1, and estrogen receptor 1 ESR1 [95,99].

7.1. ESR1 mutations

Mutations in the ESR1 gene that encodes for ERa are

known drivers of resistance to first-line AI, and approxi-

mately 40% of these patients acquire ESR1 mutations

over time during the disease progression and evolution

[100-102]. The most common ESR1 hotspot mutations

are Y537S/N/C, D538G, and L536Y (see Fig. 3) [103].

A combined analysis of the phase III SoFEA and

EFECT Trials, which enrolled HR-positive mBC

patients, demonstrated that patients with ESR1 muta-

tion at baseline who had previously progressed on non-

steroidal AI therapy experienced inferior PFS and OS

when treated with exemestane vs. fulvestrant 250 mg

[72]. The PALOMA-3 trial further investigated specific

hotspot mutations, some of them assumed to be sub-

clonal in resistant cancer cells. Specifically, in 114 of 445

patients an ESR1 hotspot mutation was detected; and

in 100 patients, a PIK3CA hotspot mutation was found

at treatment initiation. On day 15 of treatment, ctDNA

levels of ESR1 mutations and also the levels of PIK3CA

mutations significantly declined, especially in the cohort

receiving palbociclib. To measure the molecular

response of ctDNA the ratio of mutant copies�mL�1 of

plasma was compared between day 1 and day 15. In

contrast to PI3KCA, the early dynamics of ESR1 muta-

tions failed to predict PFS in this trial. Although there

was a decrease in ESR1 mutant clones upon treatment

with fulvestrant � palbociclib, this did not correlate
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with long-term improvement in PFS [104]. Nevertheless,

one could speculate that decreasing levels of ctDNA

correlated with some response to treatment, a concept

which is now also evaluated in prospective clinical

trials.

The PADA-1 trial adopted a pioneering strategy by

exchanging the endocrine partner of CDK4/6 inhibitor

therapy upon the detection of an ESR1 mutation in

patients with ER-positive/HER2-negative mBC, which

led to almost doubling the PFS by switching from

AI + palbociclib to fulvestrant + palbociclib [105]. A

multiplex digital droplet PCR (ddPCR) based detection

of ESR1 mutations was conducted analyzing only a

subset of ESR1 hotspot mutations (Fig. 3). ESR1 muta-

tions result in estrogen-independent ER activation and

thus, resistance to AI, but not to ER inhibitors, arises

[100,106]. However, as recent trials with oral selective

estrogen receptor degraders (SERDs) have shown, ful-

vestrant has less activity in patients with ESR1

mutations. This was particularly shown in the SERENA

2 trial, where ctDNA-based ESR1 clearance was earlier

and more effective with camizestrant as with fulves-

trant. The concept of PADA1 trial was novel, although

the testing strategy in future trials may be improved,

and treatments selection toward more effective strate-

gies may be more appropriate. Currently ongoing clini-

cal trials address this question. The EMERALD trial

evaluated the efficacy and safety of the oral ERD elaces-

trant vs. standard-of-care ET (either AI or fulvestrant)

in previously treated patient with ER-positive/HER2-

negative mBC Elacestrant treatment resulted in a 30%

reduction in the risk of progression or death compared

to SOC in the overall cohort, as well as a 45% risk

reduction in patients with ESR1 mutation [71]. How-

ever, some patients harboring ESR1 mutations do not

benefit from elacestrant, which is indicated by an initial

drop in PFS that may indicate ‘total endocrine resis-

tance’ [71]. Therefore, it is important to identify further

Fig. 3. List of currently clinically relevant ESR1 mutations in patients with endocrine resistant ER-positive breast cancer (as analyzed in the

current studies leading to approval or upcoming approval of SERDs in. development). ER, estrogen receptor; SERD, selective estrogen

receptor degrader. Figure created with BioRender.com.
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biomarkers for the selection of patients who will benefit

from other treatment regimens, for example, chemo-

therapy or antibody drug conjugates. Whereas the

EMERALD trial has been the first which led to

approval of an oral SERD in palliative treatment, only

a small proportion of patients will be selected for single

agent treatment after progression on combinations with

CDK4/6 inhibitors. Nevertheless, these data gave rise to

an update of the American Society of Clinical Oncology

(ASCO) guidelines that now include a testing recom-

mendation for ESR1 mutations, as well as a recommen-

dation of the oral SERD elacestrant for patients with

mBC and detectable ESR1 mutations who experience

disease progression on ET with or without prior

CDK4/6 inhibitor treatment. Moreover, the updated

ASCO guidelines state that retesting at subsequent dis-

ease progression is warranted to determine whether an

ESR1 mutation has emerged [107]. The FDA has

already approved elacestrant and the Guardant360

CDx assay as a companion diagnostic device in the

beginning of 2023. The EMA has approved elacestrant

in September 2023 for the treatment of postmenopausal

women and men with ER-positive/HER2-negative,

locally advanced, or mBC with an activating ESR1

mutation who have disease progression following at

least 1 line of ET including a CDK4/6 inhibitor. This

implicates an urgent need for reliable ESR1 testing.

In the SERENA-2 trial, camizestrant, a next-

generation oral selective estrogen receptor antagonist

and degrader (ngSERD), is being studied with promis-

ing results in post-menopausal women with advanced

ER-positive/HER2-negative BC. At the San Antonio

Breast Cancer Symposium, Oliveira et al. [108] showed

that treatment with camizestrant (both 75 and 150 mg)

resulted in eradicated or near undetectable ESR1m

ctDNA levels by day 1 of cycle 2. These lower levels

were maintained for at least 6 months. These data sug-

gest that an early intervention upon detection of an

ESR1 mutation may provide the maximum patient

benefit, as shown by a PFS of 12.9 months (range,

4.5–14.7) on camizestrant treatment vs. 2.2 months

(range, 1.9–9.3) in fulvestrant-treated patients with

only a single ESR1 mutation [109]. This is being inves-

tigated further in the randomized, double-blind, phase

III SERENA-6 trial. In that trial, the efficacy and

safety of switching from an AI to camizestrant is

assessed in patients with HR-positive/HER2-negative

mBC on first-line therapy upon detection of an ESR1

mutation in ctDNA, while maintaining treatment with

the same CDK4/6 inhibitor [110]. In addition, these

data underline the potential of ctDNA as a monitoring

tool for treatment response.

Another approach to overcome the limited treat-

ment options for patients with mBC with ESR1 muta-

tions is lasofoxifene, a third-generation selective

estrogen receptor modulator. In the ELAINE-1 study,

lasofoxifene demonstrated antitumor activity com-

pared to fulvestrant [111], and in ELAINE-2, lasofoxi-

fene showed antitumor activity in combination with

abemaciclib [112]. Based on these data, patients with

ESR1-mutant, ER-positive, HER2-negative mBC will

be randomized to either abemaciclib plus fulvestrant

or abemaciclib plus lasofoxifene in the large, random-

ized phase III ELAINE-3 trial (NCT05696626) that is

using the FDAapproved Guardant360� CDx liquid

biopsy NGS–based test as a companion diagnostic for

the sequencing of 74 genes. Although the clinical need

for liquid biopsy-based testing is becoming increasingly

apparent, none of the assays described or listed here

are currently reimbursed in a routine clinical setting in

Austria, where the authors are actively practicing. This

applies to all mutations and targets discussed, includ-

ing PIK3CA or ESR1 hotspot mutations, among

others. The situation is particularly crucial for ESR1

testing, since the authors mandate ctDNA-based detec-

tion of ESR1 mutation in order to reimburse elaces-

trant. Thus, there is no clear recommendation for a

specific assay to be used, but rather an attempt of the

authors to address this critical issue.

In addition to detecting ESR1 point mutations, liq-

uid biopsies were shown to efficiently identify ESR1

fusions, particularly in metastatic ET-resistant ER-

positive breast cancer [113]. Since not all ESR1 fusions

are clinically actionable, Gou et al. [114] developed a

24-gene expression signature specific for transcription-

ally active ESR1 fusion proteins. Depending on the

ESR1 fusion type, there are different strategies, for

example, targeting of CDK4/6 if an active ligand-

binding/Activation Function 2 domain swap is

detected, or downstream CDK4/6 inhibition if the

ligand-binding domain is absent, or administration of

HER2-directed antibody-drug-conjugates if a patient

presents with an ESR1::CCDC170 fusion [115]. How-

ever, these are observations from case studies, and fur-

ther strategies aimed at precision treatment of these

resistance alterations is warranted.

7.2. PIK3CA mutations

In 28–46% of patients with HR-positive/HER2-

negative mBC, mutations in the PI3KCA gene that

encodes the p110a subunit of phosphatidylinositol-3-

kinase (PI3K) are reported and these are associated

with chemoresistance and poor prognosis [116-118].
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The SOLAR-1 trial that included HR-positive/HER2-

negative mBC patients showed that the addition of

alpelisib, an orally bioavailable a-selective PI3K inhibi-

tor, resulted in a significant and clinically meaningful

PFS benefit in the presence of the PIK3CA mutation

regardless of its location (E542X, E545X, or H1047X).

Although the overall survival results did not cross the

prespecified efficacy boundary, a 7.9-month numeric

improvement in median overall survival was reported

in patients receiving fulvestrant plus alpelisib [118]. In

the BYLieve trial, alpelisib plus fulvestrant also

showed a significant impact on PFS in patients who

had experienced progression on a CDK4/6 inhibitor

plus an AI [119]. We have shown that the SiMSen-

Seq-based detection of PIK3CA mutations in plasma

exhibits advantageous concordance with the tissue

analyses, and when combined with an untargeted,

mutation-independent approach for detecting ctDNA

fractions, it enhances the performance of the SiMSen-

Seq test. This combinatory approach helps select suit-

able patients for alpelisib treatment [120]. Our current

approaches are focusing on maintaining the sensitivity

for PIK3CA mutational testing while also allowing for

testing of additional targets including ESR1.

7.3. Protein kinase B (AKT) mutations

The protein kinase B (AKT) comprises three highly

homologous isoforms: namely Akt1 (PKBa), Akt2

(PKBb), and Akt3 (PKBc) [121]. In addition to PIK3CA

and ESR1, AKT is implicated in endocrine resistance

in HR-positive/HER2-negative mBC. The phase III

CAPItello-291 trial investigated the efficacy and safety of

the pan-AKT inhibitor capivasertib + fulvestrant in

patients with AI-resistant HR-positive/HER2-negative

mBC [122]. The dual primary endpoint consisting of

investigator-assessed PFS in the overall population (7.2

vs. 3.6 months) as well as in patients with AKT pathway-

altered tumors (7.3 vs. 3.1 months) was met. Besides

PIK3CA mutations, AKT1 and PTEN mutations were

associated with greater benefit from capivasertib then in

the overall population. Although NGS was performed in

tumor tissue [123], other trials have already identified

AKT1 and PTEN mutations via ctDNA and allocated

patients to an appropriate therapy [44]. Nevertheless, if

included in the panel, this information may add informa-

tion to clinical interpretation.

7.4. ERBB2 (HER2) mutations

Somatic activating mutations in the ERBB2 (HER2)

gene are present in approximately 3–5% of patients with

metastatic HR-positive breast cancer and are associated

with endocrine resistance due to crosstalk between

HER2 and ER signaling pathways. In the SUMMIT

trial, neratinib, an oral, irreversible, pan-HER tyrosine

kinase inhibitor (TKI), was administered in combina-

tion with fulvestrant and trastuzumab to patients with

HR-positive HER2-mutant mBC after progression on

CDK4/6 inhibitor therapy. The triplet combination

showed encouraging clinical efficacy with an overall

response rate of 39% (95% CI, 26–52) and a median

PFS of 8.3 months (95% CI, 6.0–15.1) [124]. The value

of liquid biopsy-based detection of HER2 mutation was

clearly suggested by plasmaMATCH trial [44].

7.5. BRCA mutations

Approximately, two thirds of the BRCA1/2 mutations

found in breast cancer are germline mutations, whereas

the remaining third are somatic [125]. While the efficacy

of poly ADP-ribose polymerase inhibitor (PARPi) ther-

apy is currently under investigation for mBC with somatic

BRCA1/2 mutations (sBRCA1/2m) by the Translational

Breast Cancer Research Consortium (NCT03344965),

there are data on germline mutations in BRCA1 or

BRCA2 already, which are carried by approximately 5%

of unselected patients with breast cancer [126] and are

detected in up to 20% of patients with TNBC [127]. The

findings of the phase III OlympiAD trial (olaparib vs.

chemotherapy median PFS of 7.0 vs. 4.2 months; hazard

ratio = 0.58, 95% CI: 0.43–0.80) showed that patients

with HER2-negative locally advanced breast cancer or

mBC and gBRCA1/2m derive significant benefit from

Table 4. Mutation diagnosis – precision medicine for mBC targeted

therapies.

Genomic finding Matched therapy

ESR1mut Elacestrant*,†

PIK3CAmut Alpelisib

(+ fulvestrant)*,†

HER2mut Neratinib*,†,

Lapatinib*,†

BRCA1/2 Olaparib*,†,

Talazoparib*,†

NTRK fusion Larotrectinib*,†,

Entrectinib*,†

Microsatellite instability-high or mismatch

repair deficient

Pembrolizumab*,†

Tumor mutational burden-high ≥10 mut/

Mb

Pembrolizumab*,†

PDL-L1 expression ≥1% Atezolizumab*,†

PD-L1 combined positive score ≥ 10 Pembrolizumab*,†

RET fusion Selpercatinib*

*FDA approved.
†EMA approved.
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PARPi therapy, which also applied to the phase III

EMBRACA study (talazoparib vs. chemotherapy,

median PFS of 8.6 vs. 5.6 months; hazard ratio = 0.54,

95% CI: 0.41–0.71) [128,129]. An investigator-initiated

phase II study revealed that olaparib is also effective in

patients with sBRCA1/2m, with almost similar ORR

(50%, 90% CI: 28–72) as reported in the OlympiAD and

EMBRACA trials (59.9%, 95% CI: 52.0–67.4 and

62.2%, 95% CI: 55.8–69.0, respectively) and a median

PFS of 6.3 months (90% CI, 4.4–not available) [128-130].
It is of importance that the majority of used NGS panels

incorporate BRCA mutations, and in most cases, the
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allele frequency of mutations enables conclusions regard-

ing the origin of mutations (germline vs. somatic). Also,

other genes that play an important role in the manage-

ment of patients with mBC, including TP53, GATA3, and

ARID1A can be assessed. However, since these are not

yet clinically established, we did not cover these alter-

ations in detail [131].

8. TMB and MSI as predictive complex
biomarkers for immunotherapy

High TMB defined as ≥ 10 mutations per megabase,

leads to clinically meaningful benefit from treatment

with pembrolizumab in several cancer types [132].

However, no patients with mBC had been included in

this study. However, in an explorative analysis from

the Impassion130 trial, higher TMB was associated

with better OS in the PD-L1 positive subgroup [133].

In both trials, TMB was tested in tumor tissue. It was

shown that TMB in plasma, referred to as blood

TMB, is highly correlative to tissue-based TMB. How-

ever, data in breast cancer regarding blood TMB as a

predictive marker for immune checkpoint inhibitor

(ICI) are lacking. MSI is another biomarker for the

clinical benefit of ICI [134]. Also, prospective data

demonstrating liquid biopsy-based detection of MSI

for the prediction of utility of ICI may be promising.

The assessment of these theragnostic markers – TMB

and MSI – demonstrated feasibility in ctDNA assays,

although studies in patients with breast cancer are still

limited [135]. A list of mutations and matched thera-

pies according to FDA and EMA approval is dis-

played in Table 4.

9. Outlook and considerations

Although the indications and guidelines for molecular

profiling of patients with mBC outlined above appear

straightforward, integrating molecular testing results

from ctDNA into routine clinical practice requires a

careful understanding of the associated technical

caveats and clinical implications, which can differ

among clinics. In terms of the test itself, it is recom-

mended to utilize a well validated assay with known

performance metrics, ensuring that molecular findings

can be accurately interpreted [136]. In addition, the

molecular test must align with the therapy indication,

costs, and reimbursement thereof, which plays a major

role in the selection of the assay. In this context, a

genomic testing cost calculator has demonstrated that

the use of NGS for up to 50 genes compared to

sequential single-gene testing (PCR for PIK3CA, IHC

for HER2 amplification and MSI-H, as well as FISH

for NTRK fusions) led to a cost reduction of approxi-

mately 42% per correctly identified patient with mBC

[137]. Ultimately, the clinical interpretation is not

always binary, that is, a mutation was detected and

therefore is matched to treatment, or a mutation was

not detected and therefore no treatment is recom-

mended. To this end, in the following, we take ESR1

testing as a use case and provide example profiling

results and decision-making thought processes to dem-

onstrate the intricacies of any issues that may arise in

the single biomarker indication setting (Fig. 4). Here,

we cover six cases of patients with mBC using a liquid

biopsy-based CGP panel (77-gene panel, assay limit of

detection: VAF 0.5%) for the indication of ESR1

mutation testing for treatment with SERDs.

Considering the presumed future increase in molecu-

lar alterations, it can be assumed that NGS will reduce

the financial burden of testing. Regarding the assay

type, targeted sequencing approaches offer the benefit

of being more cost-effective, since only loci of interest

or rather clinically relevant hotspot mutations are ana-

lyzed, considering that a large part of the genome is

still undruggable [138]. Thus, it might be easier to

push the reimbursement of liquid biopsies that are

directly linked to specific treatments. With an emphasis

Fig. 4. Six examples for patients with mBC with ESR1 molecular testing results. Six patient examples are illustrated to demonstrate the

spectrum of results that may be observed from routine molecular profiling of plasma DNA in the clinical setting. The same 77-gene CGP

panel was employed for all cases. This assay has been validated to reliably detect variants down to a VAF of 0.5%, indicating that any

variant with a VAF below this percentage is below the technical LOD. In the left-most panel, the alterations detected are listed alongside

their VAFs, which are provided as a percentage in parentheses. An asterisk next to the VAF designates that this variant is below the assay

LOD. In addition, the TF in plasma was estimated with a standard algorithm (ichorCNA), which has an LOD of 3%, and is provided in the

box above the list of detected variants. In the middle column, a brief orientation and interpretation of the results is provided, which should

help understand the technical and biological considerations that play a role in the clinical decision. The third column provides a brief

justification of the treatment implications. As an official guideline or decision tree for the implementation of ESR1 mutation testing results is

currently lacking, the justification here serves as more of a high-level interpretation of the results for clinicians. Importantly, this highlights

the utility of the molecular tumor board in performing an interdisciplinary, comprehensive evaluation of the results within the individual

patient context to derive the most evidence-based decision. CGP, comprehensive genomic profiling; LOD, limit of detection; mBC,

metastatic breast cancer; TF, tumor fraction; VAF, variant allele frequency. Figure created with BioRender.com.
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on the value of molecular characterization for treat-

ment decisions in breast cancer, we finally provide a

potential roadmap depicting this integration into clini-

cal practice in Fig. 5.

10. Conclusions

Liquid biopsy, particularly the analysis of ctDNA, is

under active investigation. This field offers a wide

range of applications, from early detection to monitor-

ing of metastatic disease, as well as selection of

mutation-directed therapies [139-141]. Minimally inva-

sive ctDNA testing, compared to conventional tissue-

based molecular analyses, not only allows for multiple

sampling but also enables the visualization of intricate

subclonal variations within the spreading tumor. These

real-time insights into tumor dynamics and genetic

alterations facilitate personalized therapy selection and

enable early and intensified intervention or therapy de-

escalation strategies, with additional psychosocial

impact on patient quality of life.

Some of these applications have become routine in clin-

ical practice, such as the analysis of the PIK3CA muta-

tional status, which can be performed based on both

tissue and plasma samples. In view of this breakthrough

and results from ESR1 trials, the 2023 ASCO guideline

update strongly recommends ESR1 ctDNA-based testing

due to its superior sensitivity in the detection of subclonal

mutations that have been acquired over time. It also sug-

gests retesting upon disease progression, which demon-

strates how the non-invasive nature of this approach can

transform standard clinical practices.
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